11-P010 Zebrafish and medaka: Model organisms for a comparative developmental approach of brain asymmetry

نویسندگان

  • Iskra A. Signore
  • Néstor Guerrero
  • Felipe Fredes
  • Felix Loosli
  • Alicia Colombo
  • Joachim Wittbrodt
  • Miguel Concha
چکیده

Despite recent progress in understanding of how left–right (L– R) asymmetry is generated during vertebrate development, many important questions still unanswered. One such question concerns the mechanism by which the signal responsible for the generation of L–R asymmetry is transferred from the node to the lateral plate. This signal, whose identity remains unknown, is generated in the node, and its arrival in the left lateral plate induces the asymmetric expression of Nodal. Although it is known that L–R asymmetry-breaking event in the mouse embryo is the leftward fluid flow (nodal flow) on the node, it is unclear what kinds of molecules and signals become asymmetric around the node due to nodal flow. We found that the transcriptional regulatory element, Asymmetric Node Enhancer (ANE), which is located within the 7.5-kb upstream region of human LEFTY-1, could direct left side specific enhancement of reporter gene expression in the node at 1-somite stage, shortly after the beginning of nodal flow. To identify the molecules and signals responsible for the asymmetric activity of ANE, we explored ANE activities in several types of L–R mutant embryos, in which asymmetric Nodal expression in LPM is abnormal. There was a good correlation between the laterality of ANE activity and that of Nodal expression in the LPM. Our results suggest that ANE responds to the L–R asymmetric signals responsible for L–R axis determination. In addition, we want to show how these players interact with each other leading to generate L–R asymmetric signal in the node.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry.

Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here, we studied the pattern of epithalamic asymmetry in zebrafish (Danio rerio) and medaka (Oryzias latipes), two related teleost species with 115-200 Myr of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the ...

متن کامل

11-P011 The role of Nodal in embryo turning and heart looping

Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here we studied the pattern of epithalamic asymmetry in zebrafish and medaka, two related teleost species with 115–200 million-year of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the parapineal–habenular–int...

متن کامل

11-P013 Gene expression in WT and Pkd2 mutant mouse embryos

Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here we studied the pattern of epithalamic asymmetry in zebrafish and medaka, two related teleost species with 115–200 million-year of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the parapineal–habenular–int...

متن کامل

11-P012 Left/right axis specification in the cilia mutant talpid3

Comparison between related species is a successful approach to uncover conserved and divergent principles of development. Here we studied the pattern of epithalamic asymmetry in zebrafish and medaka, two related teleost species with 115–200 million-year of independent evolution. We found that these species share a strikingly conserved overall pattern of asymmetry in the parapineal–habenular–int...

متن کامل

Establishing a new animal model for muscle regeneration studies

Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system.  Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2009